Federated News Recommendation with Fine-grained Interpolation and Dynamic Clustering

Sanshi Lei Yu, Qi Liu¹, Fei Wang, Yang Yu, Enhong Chen University of Science and Technology of China

¹Corresponding author.

1. Introduction

2. Methodology

Fine-grained Model Interpolation

Group-level Personalization with Dynamic User Clustering

3. Experiments

4. Conclusion

Introduction

News Recommendation

Figure 1: General news recommendation model structure

Federated Learning

Federated Learning helps to protect user privacy in news recommendation tasks.

Figure 2: The workflow of Federated Learning

Non-IID Problem Leads to Performance Degradation

The data of users are usually non-IID, which leads to model performance degradation in Federated Learning.

Figure 3: Category distribution of users' history news

Model interpolation helps to solve this by interpolating the local personalized models with the global model.

 $\lambda \in [0,1]$ is the interpolation coefficient, which controls how much the model is personalized.

It's generally hard to determine the optimal interpolation coefficient λ .

$$\boldsymbol{w}'_{l_i}^t = \lambda \, \boldsymbol{w}_{l_i}^{t-1} + (1-\lambda) \, \boldsymbol{w}_g^{t-1} \tag{2}$$

It's generally hard to determine the optimal interpolation coefficient λ .

$$\boldsymbol{w}'_{l_i}^t = \lambda \, \boldsymbol{w}_{l_i}^{t-1} + (1-\lambda) \, \boldsymbol{w}_g^{t-1} \tag{2}$$

• Setting λ per client by minimizing the empirical risk?

$$\lambda_{i}^{t} = \arg\min_{\lambda} \ell(\boldsymbol{w}'_{l_{i}}^{t}, d_{i})$$

=
$$\arg\min_{\lambda} \ell(\lambda \boldsymbol{w}_{l_{i}}^{t-1} + (1-\lambda) \boldsymbol{w}_{g}^{t-1}, d_{i})$$
(3)

 \implies tremendously computational cost

It's generally hard to determine the optimal interpolation coefficient λ .

$$\boldsymbol{w}'_{l_i}^t = \lambda \, \boldsymbol{w}_{l_i}^{t-1} + (1-\lambda) \, \boldsymbol{w}_g^{t-1} \tag{2}$$

• Setting λ per client by minimizing the empirical risk?

$$\lambda_{i}^{t} = \underset{\lambda}{\arg\min} \ell(\boldsymbol{w}_{l_{i}}^{t}, d_{i})$$

=
$$\underset{\lambda}{\arg\min} \ell(\lambda \boldsymbol{w}_{l_{i}}^{t-1} + (1-\lambda) \boldsymbol{w}_{g}^{t-1}, d_{i})$$
(3)

 \implies tremendously computational cost

• Tuning λ globally as a hyper-parameter? \implies non-optimal model performance

Figure 4: The framework of FINDING (Federated News Recommendation with **F**ine-grained **In**terpolation and **D**ynamic Cluster**ing**). It consists of two parts: 1. fine-grained model interpolation, 2. group-level personalization with dynamic user clustering.

Fine-grained Model Interpolation

Time-aware Interpolation

Recall that $\lambda \in [0,1]$ controls how much the model is personalized.

$$\boldsymbol{w}'_{l_i}^t = \lambda \, \boldsymbol{w}_{l_i}^{t-1} + (1-\lambda) \, \boldsymbol{w}_g^{t-1} \tag{4}$$

Time-aware Interpolation

Recall that $\lambda \in [0, 1]$ controls how much the model is personalized.

$$\boldsymbol{w}'_{l_i}^t = \lambda \, \boldsymbol{w}_{l_i}^{t-1} + (1-\lambda) \, \boldsymbol{w}_g^{t-1} \tag{4}$$

Time-aware Interpolation: the personalization coefficient λ varies with the number of training rounds (the longer the training processes, the higher λ should be).

$$\lambda \propto g(t): [0,\infty) \to [0,1]$$
 (5)

Time-aware Interpolation

Recall that $\lambda \in [0,1]$ controls how much the model is personalized.

$$\boldsymbol{w}'_{l_i}^t = \lambda \, \boldsymbol{w}_{l_i}^{t-1} + (1-\lambda) \, \boldsymbol{w}_g^{t-1} \tag{4}$$

Time-aware Interpolation: the personalization coefficient λ varies with the number of training rounds (the longer the training processes, the higher λ should be).

$$\lambda \propto g(t): [0,\infty) \to [0,1]$$
 (5)

Layer-aware Interpolation: the personalization coefficient λ depends on the layer depth (the shallower a layer is, the higher λ should be).

$$\lambda \propto h(i): [0, N-1] \to [0, 1]$$
(7)

Layer-aware Interpolation

Layer-aware Interpolation: the personalization coefficient λ depends on the layer depth (the shallower a layer is, the higher λ should be).

$$\lambda \propto h(i): [0, N-1] \to [0, 1]$$
(7)

An example:

$$h(i) = (\frac{i+1}{N})^{\beta} \quad (\beta > 0) \quad (8)$$

Integrating the two types of interpolation, we propose the *Fine-grained model Interpolation* strategy.

$$\lambda(t,i) = g(t)h(i)$$
$$= (1 - \alpha^{-t})(\frac{i+1}{N})^{\beta}$$
(9)
$$\lambda$$

Group-level Personalization with Dynamic User Clustering

 $\mathit{cold} \ \mathsf{users} \Longrightarrow \mathsf{low-performance} \ \mathsf{local} \ \mathsf{models} \Longrightarrow \mathsf{limited} \ \mathsf{gain} \ \mathsf{from} \ \mathsf{interpolation}$

Figure 5: Length distribution of users' training samples

Group-level Personalization with Dynamic User Clustering

1: initialize $\boldsymbol{w}_{\sigma}^{0} = \boldsymbol{w}_{l_{0}}^{0} = \boldsymbol{w}_{l_{0}}^{0}, \ldots, = \boldsymbol{w}_{l_{V}}^{0}$ 2: $\boldsymbol{u}_0, \boldsymbol{u}_1, \dots \leftarrow \text{InferUserVector}(\boldsymbol{w}_{\sigma}^0, \{d_0, d_1, \dots\})$ 3: $m \leftarrow \text{Cluster}(\boldsymbol{u}_0, \boldsymbol{u}_1, \dots)$ \triangleright *m* maps users to groups 4: **for** each round t = 1, 2, ... **do** 5: for each group $i = 0, 1, \ldots, K - 1$ do 6: $\mathbf{w}'_{L}^{t} \leftarrow \lambda \mathbf{w}_{L}^{t-1} + (1-\lambda) \mathbf{w}_{\sigma}^{t-1}$ $\triangleright \lambda$ from Eq. (9) 7: end for $S_t \leftarrow (randomly select C users)$ 8: $\boldsymbol{w}_{g}^{t} \leftarrow \boldsymbol{w}_{g}^{t-1} - \eta \sum_{i \in S_{t}} \frac{|d_{i}|}{\sum\limits_{k \in S_{t}} |d_{k}|} \nabla \ell(\boldsymbol{w'}_{I_{m(i)}}^{t}, d_{i})$ 9: **for** each group i = 0, 1, ..., K - 1 **do** 10: $S_t \in \{i \in S_t \mid m(i) = i\}$ 11: $\boldsymbol{w}_{l_i}^t \leftarrow \boldsymbol{w'}_{l_i}^t - \eta \sum_{j \in S_{t,i}} \frac{|d_j|}{\sum\limits_{k \in S_{t,i}} |d_k|} \nabla \ell(\boldsymbol{w'}_{l_i}^t, d_j)$ 12: 13: end for if t % T = 0 then 14: \triangleright re-cluster periodically $\boldsymbol{u}_0, \boldsymbol{u}_1, \dots \leftarrow \text{InferUserVector}(\boldsymbol{w}_{\varphi}^t, \{d_0, d_1, \dots\})$ 15: 16: $m \leftarrow \text{Cluster}(\boldsymbol{u}_0, \boldsymbol{u}_1, \dots)$ $\boldsymbol{w}_{h}^{t}, \boldsymbol{w}_{h}^{t}, \dots, \boldsymbol{w}_{h-1}^{t} \leftarrow \text{(reinitialize, see the paper for details)}$ 17: 18: end if 19: end for

Experiments

Baseline Models

- Centralized denotes the plain centralized training method.
- Vanilla FL is the vanilla adaptation of federated learning to news recommendation tasks.
- FedProx addresses the heterogeneity issue with a proximal term that adjusts local model updates.
- FedPer trains the base layers of a deep model centrally, while the top layers (i.e., the personalization layers) are trained locally.
- **SCAFFOLD** proposes to tackle the client drift problem in federated learning with control variates.
- **pFedMe** makes use of the Moreau envelope function which helps decompose the personalized model optimization from global model learning.
- **CFL** iteratively splits the users into groups based on the similarity of the gradient updates.

Performance Comparison

		Adressa				MIND			
		AUC	MRR	nDCG@5	nDCG@10	AUC	MRR	nDCG@5	nDCG@10
NRMS	Centralized	72.67	29.39	35.66	41.16	66.11	31.59	34.76	41.00
	Vanilla FL	71.13	26.10	32.03	37.49	65.04	30.78	33.58	40.04
	FedProx	71.25	27.30	32.55	38.33	65.14	30.49	33.42	39.75
	FedPer	71.39	27.64	34.02	39.17	65.43	31.03	34.06	40.41
	SCAFFOLD	71.50	27.66	34.59	39.28	65.48	30.81	33.95	40.26
	pFedMe	71.73	27.83	34.32	40.17	65.27	30.73	33.56	40.19
	CFL	71.60	27.79	34.62	40.04	65.32	30.92	33.80	40.39
	FINDING	72.51	28.89	35.81	41.28	66.14	31.30	34.62	41.03
NAML	Centralized	80.44	33.79	42.16	47.93	67.17	31.88	35.30	41.60
	Vanilla FL	78.71	32.84	41.04	46.75	66.01	30.96	34.38	40.70
	FedProx	78.69	33.26	41.74	47.01	66.15	31.16	34.41	40.66
	FedPer	79.01	33.11	41.88	47.43	66.78	31.56	34.92	41.02
	SCAFFOLD	79.44	33.22	41.34	47.15	66.42	31.37	34.69	40.94
	pFedMe	79.17	32.98	41.73	47.68	66.16	31.41	34.28	40.57
	CFL	79.44	33.12	41.60	47.58	66.23	31.25	34.50	40.94
	FINDING	80.35	33.59	42.13	48.06	67.26	31.85	35.19	41.64

Table 1: Results of different methods on two datasets (in percent)

Conclusion

Conclusion

Problem

How to address the data heterogeneity issue, namely the non-IID data problem, in federated news recommendation tasks?

Conclusion

Problem

How to address the data heterogeneity issue, namely the non-IID data problem, in federated news recommendation tasks?

Solution

FINDING: Federated News Recommendation with **F**ine-grained **In**terpolation and **D**ynamic Cluster**ing**

- 1. Fine-grained model interpolation
 - Time-aware interpolation
 - Layer-aware interpolation
- 2. Group-level personalization with dynamic user clustering