
Leveraging Tripartite Interaction Information from Live
Stream E-Commerce for Improving Product Recommendation

Sanshi Lei Yu1, Zhuoxuan Jiang1,2, Dong-Dong Chen, Shanshan Feng2,
Dongsheng Li, Qi Liu, Jinfeng Yi
June 23, 2021

1Equal contributions.
2Corresponding authors.

Contents

1. Introduction
2. Problem Definition
3. Data Analysis
4. Methodology

Bipartite Node Embedding Learning

Model Prediction

Multi-Task Optimization

5. Experiments

Dataset Description

Experimental Settings

Evaluation Metrics

Baseline Models

Hyper-parameters Settings

Performance Comparison

Ablation Study

6. Conclusion

1

Introduction

Introduction

Recently, live streaming E-commerce is advancing rapidly.

User

StreamerItem

Adding to cart

Buying

Selling

Following

Watching

Thumbs-up

Figure 1: Example of the live stream E-commerce scenario

2

Introduction

We collect two new real-world datasets of tripartite interactions from an
E-Commerce website, and propose the streamers’ influence:

1. The streamers connect users with items.
2. The streamers connect similar users.
3. The streamers connect similar items.

3

Introduction

We propose the Live Stream E-Commerce Graph Neural Network (LSEC-GNN),
which leverages streamers’ influence for improving product recommendation.

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

(a) Bipartite node embedding learning

𝑬𝐼
sell𝑬𝐼

buy
𝑬𝑈
follow𝑬𝑈

buy 𝑬𝑆
follow𝑬𝑆

sell𝑬𝑈
follow𝑬𝑈

buy

Concat + MLP Concat + MLP

𝐿 = 𝛼 ∙ 𝑳𝐛𝐮𝐲 + 1 − 𝛼 ∙ 𝑳𝐟𝐨𝐥𝐥𝐨𝐰

(b) Model prediction and optimization

Figure 2: The overall architecture of LSEC-GNN framework

4

Problem Definition

Problem Definition

Definition
User-Item Buying Graph, denoted as Gbuy = (U ∪ I,Abuy), where U is the set for
users and I is the set for items. Abuy ∈ R|U|×|I| is the adjacency matrix for the
graph. For the k-th row, j-th column element aj,k in Abuy, we have:

aj,k =

1 when uj ∈ U bought ik ∈ I,

0 otherwise.
(1)

5

Problem Definition

Definition
User-Streamer Following Graph, denoted as Gfollow = (U ∪ S,Afollow), where U is
the set for users and S is the set for streamers. Afollow ∈ R|U|×|S| is the
adjacency matrix for the graph. For the k-th row, j-th column element aj,k in
Afollow, we have:

aj,k =

1 when uj ∈ U followed sk ∈ S,

0 otherwise.
(2)

6

Problem Definition

Definition
Streamer-Item Selling Graph, denoted as Gsell = (S ∪ I,Asell), where S is the set
for streamers and I is the set for items. Asell ∈ R|S|×|I| is the adjacency matrix
for the graph. For the k-th row, j-th column element aj,k in Asell, we have:

aj,k =

1 streamer sj ∈ S sold ik ∈ I and the sales reaches the threshold,
0 otherwise.

(3)

7

Problem Definition

Definition
Heterogeneous Tripartite Interaction Graph is denoted as ⟨Gbuy,Gfollow,Gsell⟩. It
captures tripartite perspectives of interaction relationship between humans and
products specifically in live stream E-Commerce.

Definition
Product Recommendation with Tripartite Interaction Information
Given Heterogeneous Tripartite Interaction Graph ⟨Gbuy,Gfollow,Gsell⟩, the
problem of product recommendation with tripartite interaction information
aims to learn low-dimensional representations for nodes and make
recommendations between users and items based on the representations.

8

Problem Definition

Definition
Heterogeneous Tripartite Interaction Graph is denoted as ⟨Gbuy,Gfollow,Gsell⟩. It
captures tripartite perspectives of interaction relationship between humans and
products specifically in live stream E-Commerce.

Definition
Product Recommendation with Tripartite Interaction Information
Given Heterogeneous Tripartite Interaction Graph ⟨Gbuy,Gfollow,Gsell⟩, the
problem of product recommendation with tripartite interaction information
aims to learn low-dimensional representations for nodes and make
recommendations between users and items based on the representations.

8

Data Analysis

Data Analysis

We collect two new real-world datasets of tripartite interactions from an
E-Commerce website. After three simulation experiments by the Monte Carlo
method1, we propose the streamers’ influence:

1. The streamers connect users with items.
2. The streamers connect similar users.
3. The streamers connect similar items.

1For the details of the experiments, please refer to the paper.

9

Streamers’ Influence

(a). 主播连接用户和商品 (c).主播连接相似的商品(b).主播连接相似的用户

𝑢1 𝑖1𝑠1

𝑢1

𝑢2
𝑠1

𝑖1 𝑢1
𝑠1

𝑖1

𝑖2

(a) The streamers connect
users with items

(a). 主播连接用户和商品 (c).主播连接相似的商品(b).主播连接相似的用户

𝑢1 𝑖1𝑠1

𝑢1

𝑢2
𝑠1

𝑖1 𝑢1
𝑠1

𝑖1

𝑖2

(b) The streamers connect
similar users

(a). 主播连接用户和商品 (c).主播连接相似的商品(b).主播连接相似的用户

𝑢1 𝑖1𝑠1

𝑢1

𝑢2
𝑠1

𝑖1 𝑢1
𝑠1

𝑖1

𝑖2

(c) The streamers connect
similar items

Figure 3: Three patterns of streamers’ influence. u, i, s mean user, item and steamer,
respectively. The solid lines represent the observed interactions while the dash lines
represent the unobserved but potential interactions.

10

The first pattern

The streamers connect users with items
Users are more likely to buy items sold by their following streamers.

(a). 主播连接用户和商品 (c).主播连接相似的商品(b).主播连接相似的用户

𝑢1 𝑖1𝑠1

𝑢1

𝑢2
𝑠1

𝑖1 𝑢1
𝑠1

𝑖1

𝑖2

Figure 4: The first pattern of streamers’ influence

11

The second pattern

The streamers connect similar users
The users following common streamer(s) are more similar (w.r.t. the bought
items).

(a). 主播连接用户和商品 (c).主播连接相似的商品(b).主播连接相似的用户

𝑢1 𝑖1𝑠1

𝑢1

𝑢2
𝑠1

𝑖1 𝑢1
𝑠1

𝑖1

𝑖2

Figure 5: The second pattern of streamers’ influence

12

The third pattern

The streamers connect similar items
The items sold by common streamer(s) are more similar (w.r.t. buyers)

(a). 主播连接用户和商品 (c).主播连接相似的商品(b).主播连接相似的用户

𝑢1 𝑖1𝑠1

𝑢1

𝑢2
𝑠1

𝑖1 𝑢1
𝑠1

𝑖1

𝑖2

Figure 6: The third pattern of streamers’ influence

13

Methodology

Methodology

To make fully use of the tripartite interaction information, we propose the Live
Stream E-Commerce Graph Neural Network (LSEC-GNN) framework.

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

(a) Bipartite node embedding learning

𝑬𝐼
sell𝑬𝐼

buy
𝑬𝑈
follow𝑬𝑈

buy 𝑬𝑆
follow𝑬𝑆

sell𝑬𝑈
follow𝑬𝑈

buy

Concat + MLP Concat + MLP

𝐿 = 𝛼 ∙ 𝑳𝐛𝐮𝐲 + 1 − 𝛼 ∙ 𝑳𝐟𝐨𝐥𝐥𝐨𝐰

(b) Model prediction and optimization

Figure 7: The overall architecture of LSEC-GNN framework

14

Methodology

Bipartite Node Embedding Learning

Bipartite Node Embedding Learning

First we build the embedding lookup table for each type of nodes:

EU = [eu1 , eu2 , . . . , eu|U|]

EI = [ei1 , ei2 , . . . , ei|I|]

ES = [es1 , es2 , . . . , es|S|]

(4)

Then in each bipartite graph, multiple GNN embedding propagation layers are
operated, which refines a node’s representation by aggregating the embeddings
of the interacted nodes.
The LSEC-GNN framework does not limit the choice of GNN layer. To demonstrate
the embedding propagation process, we will take GCN as the example.

15

Bipartite Node Embedding Learning

First we build the embedding lookup table for each type of nodes:

EU = [eu1 , eu2 , . . . , eu|U|]

EI = [ei1 , ei2 , . . . , ei|I|]

ES = [es1 , es2 , . . . , es|S|]

(4)

Then in each bipartite graph, multiple GNN embedding propagation layers are
operated, which refines a node’s representation by aggregating the embeddings
of the interacted nodes.

The LSEC-GNN framework does not limit the choice of GNN layer. To demonstrate
the embedding propagation process, we will take GCN as the example.

15

Bipartite Node Embedding Learning

First we build the embedding lookup table for each type of nodes:

EU = [eu1 , eu2 , . . . , eu|U|]

EI = [ei1 , ei2 , . . . , ei|I|]

ES = [es1 , es2 , . . . , es|S|]

(4)

Then in each bipartite graph, multiple GNN embedding propagation layers are
operated, which refines a node’s representation by aggregating the embeddings
of the interacted nodes.
The LSEC-GNN framework does not limit the choice of GNN layer. To demonstrate
the embedding propagation process, we will take GCN as the example.

15

Bipartite Node Embedding Learning

In GCN, the l-th is updated as follows:

H(l+1) = fGCN,l(H(l))

= σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

) (5)

where Ã = A+ IN is the adjacency matrix of a bipartite graph G with added
self-connections. IN denotes the identity matrix, D̃ii =

∑
j Ãij, and W(l) is a

layer-specific trainable weight matrix. σ(·) denotes the activation function. H(l) is
the input embeddings in l-th layer.

16

Bipartite Node Embedding Learning

Note the previous equation is for homogeneous graph while the bipartite graph is
a heterogeneous graph. So we need to convert it into a homogeneous graph
before applying the equation. Take User-Item Buying Graph for example, the
input embedding H(0) and adjacency matrix A for the converted homogeneous
graph can be formulated as:

H(0) = [EU, EI]

A =

[
0 Abuy

A⊺buy 0

]
(6)

where EU and EI are the outputs of user and item embedding lookup tables,
respectively. Abuy is the adjacency matrix for User-Item Buying Graph.

17

Bipartite Node Embedding Learning

If we use two GCN layers to
refine node embeddings, then
on User-Item Buying Graph we
have:

H(1) = fbuyGCN,0([EU, EI])

[EbuyU , EbuyI] = fbuyGCN,1(H
(1))

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

Figure 8: Bipartite node embedding learning

18

Bipartite Node Embedding Learning

Similarly, on User-Streamer
Following Graph we have:

H(1) = ffollowGCN,0([EU, ES])
[EfollowU , EfollowS] = ffollowGCN,1 (H(1))

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

Figure 9: Bipartite node embedding learning

19

Bipartite Node Embedding Learning

On Streamer-Item Selling Graph
we have:

H(1) = fsellGCN,0([ES, EI])
[EsellS , EsellI] = fsellGCN,1(H(1))

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

Figure 10: Bipartite node embedding learning

20

Bipartite Node Embedding Learning

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

Figure 11: Bipartite node embedding learning

21

Methodology

Model Prediction

Model Prediction

How to make use of the embeddings for prediction?

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

Figure 12: Bipartite node embedding learning 22

Model Prediction

To capture the complex relationships between vectors from different spaces:

Concat + MLP !

23

Model Prediction

To capture the complex relationships between vectors from different spaces:

Concat + MLP !

23

Model Prediction

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

Figure 13: Bipartite node embedding learning

𝑬𝐼
sell𝑬𝐼

buy
𝑬𝑈
follow𝑬𝑈

buy 𝑬𝑆
follow𝑬𝑆

sell𝑬𝑈
follow𝑬𝑈

buy

Concat + MLP Concat + MLP

ො𝑦𝑢𝑖 ො𝑦𝑢𝑠

Figure 14: Model prediction with
Concat + MLP

24

Model Prediction

If we use a two-layers MLP, the buying preference
score ŷui between user u and item i is
formulated as:

vui = [EsellI i∥E
buy
I i∥E

buy
U u∥E

follow
U u]

ŷui = σ2(WT
2(σ1(WT

1vui + b1)) + b2)
(7)

where Wx, bx and σx denote the weight matrix,
bias vector and activation function for the x-th
layer of MLP, respectively.

𝑬𝐼
sell𝑬𝐼

buy
𝑬𝑈
follow𝑬𝑈

buy 𝑬𝑆
follow𝑬𝑆

sell𝑬𝑈
follow𝑬𝑈

buy

Concat + MLP Concat + MLP

ො𝑦𝑢𝑖 ො𝑦𝑢𝑠

Figure 13: Model prediction with
Concat + MLP

24

Methodology

Multi-Task Optimization

Buying Task Optimization

We adopt the binary cross-entropy loss (aka, log loss).

Lbuy = −
∑

(u,i)∈Y∪Y−

yui log ŷui + (1− yui) log(1− ŷui). (8)

where Y is the set for positive items. If interaction between user u and item i is
observed, put (u, i) into Y . Y− is the set for negative items. We construct it with
negative sampling strategy. Specifically, for each (u, i) in Y , we randomly select K
uninteracted items i−1 , i

−
2 , . . . , i

−
K . Then we put (u, i−1), (u, i

−
2), . . . , (u, i

−
K) into Y−.

yui is the ground truth. yui = 1 if (u, i) ∈ Y . If (u, i) ∈ Y− then yui = 0. ŷui is the
prediction value for yui.

25

Buying Task Optimization

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

Figure 14: Bipartite node embedding learning

𝑬𝐼
sell𝑬𝐼

buy
𝑬𝑈
follow𝑬𝑈

buy 𝑬𝑆
follow𝑬𝑆

sell𝑬𝑈
follow𝑬𝑈

buy

Concat + MLP Concat + MLP

𝐿 = 𝛼 ∙ 𝑳𝐛𝐮𝐲 + 1 − 𝛼 ∙ 𝑳𝐟𝐨𝐥𝐥𝐨𝐰

Figure 15: Buying task prediction
and optimization

26

Following Task Optimization

User

Item Streamer

𝑬𝑰 𝑬𝑺

𝑬𝑼

𝑬𝑆
follow𝑬𝐼

sell 𝑬𝑆
sell𝑬𝐼

buy

𝑬𝑈
follow𝑬𝑈

buy

GNN

GNN GNN

Figure 16: Bipartite node embedding learning

𝑬𝐼
sell𝑬𝐼

buy
𝑬𝑈
follow𝑬𝑈

buy 𝑬𝑆
follow𝑬𝑆

sell𝑬𝑈
follow𝑬𝑈

buy

Concat + MLP Concat + MLP

𝐿 = 𝛼 ∙ 𝑳𝐛𝐮𝐲 + 1 − 𝛼 ∙ 𝑳𝐟𝐨𝐥𝐥𝐨𝐰

Figure 17: Following task prediction
and optimization

27

Multi-Task Optimization

𝑬𝐼
sell𝑬𝐼

buy
𝑬𝑈
follow𝑬𝑈

buy 𝑬𝑆
follow𝑬𝑆

sell𝑬𝑈
follow𝑬𝑈

buy

Concat + MLP Concat + MLP

𝐿 = 𝛼 ∙ 𝑳𝐛𝐮𝐲 + 1 − 𝛼 ∙ 𝑳𝐟𝐨𝐥𝐥𝐨𝐰

Figure 18: Multi-task optimization

28

Experiments

Experiments

Dataset Description

Dataset Description

We build the Live Stream E-Commerce (LSEC) datasets in the following steps:

1. Select the interaction relationships
we select three relationships from Live Stream E-Commerce scenario:
User-Item Buying, User-Streamer Following and Streamer-Item Selling.

2. Divide the time range
From December 1, 2020, the first 30 days are for training, the following 10 days
for validation and the last 10 days for test.

3. Construct the node lists
We randomly sample the data and construct the lists for users, items and
streamers. Based on different sampling ratios, we get two groups of the lists.

4. Extract the data
Extract the three types of interactions between the nodes. The sales
threshold for User-Streamer Following is set as 20. The length of ranked list
for Top-N recommendation evaluation is set as 500.

29

Dataset Description

We build the Live Stream E-Commerce (LSEC) datasets in the following steps:

1. Select the interaction relationships
we select three relationships from Live Stream E-Commerce scenario:
User-Item Buying, User-Streamer Following and Streamer-Item Selling.

2. Divide the time range
From December 1, 2020, the first 30 days are for training, the following 10 days
for validation and the last 10 days for test.

3. Construct the node lists
We randomly sample the data and construct the lists for users, items and
streamers. Based on different sampling ratios, we get two groups of the lists.

4. Extract the data
Extract the three types of interactions between the nodes. The sales
threshold for User-Streamer Following is set as 20. The length of ranked list
for Top-N recommendation evaluation is set as 500.

29

Dataset Description

We build the Live Stream E-Commerce (LSEC) datasets in the following steps:

1. Select the interaction relationships
we select three relationships from Live Stream E-Commerce scenario:
User-Item Buying, User-Streamer Following and Streamer-Item Selling.

2. Divide the time range
From December 1, 2020, the first 30 days are for training, the following 10 days
for validation and the last 10 days for test.

3. Construct the node lists
We randomly sample the data and construct the lists for users, items and
streamers. Based on different sampling ratios, we get two groups of the lists.

4. Extract the data
Extract the three types of interactions between the nodes. The sales
threshold for User-Streamer Following is set as 20. The length of ranked list
for Top-N recommendation evaluation is set as 500.

29

Dataset Description

We build the Live Stream E-Commerce (LSEC) datasets in the following steps:

1. Select the interaction relationships
we select three relationships from Live Stream E-Commerce scenario:
User-Item Buying, User-Streamer Following and Streamer-Item Selling.

2. Divide the time range
From December 1, 2020, the first 30 days are for training, the following 10 days
for validation and the last 10 days for test.

3. Construct the node lists
We randomly sample the data and construct the lists for users, items and
streamers. Based on different sampling ratios, we get two groups of the lists.

4. Extract the data
Extract the three types of interactions between the nodes. The sales
threshold for User-Streamer Following is set as 20. The length of ranked list
for Top-N recommendation evaluation is set as 500.

29

Dataset Description

We build the Live Stream E-Commerce (LSEC) datasets in the following steps:

1. Select the interaction relationships
we select three relationships from Live Stream E-Commerce scenario:
User-Item Buying, User-Streamer Following and Streamer-Item Selling.

2. Divide the time range
From December 1, 2020, the first 30 days are for training, the following 10 days
for validation and the last 10 days for test.

3. Construct the node lists
We randomly sample the data and construct the lists for users, items and
streamers. Based on different sampling ratios, we get two groups of the lists.

4. Extract the data
Extract the three types of interactions between the nodes. The sales
threshold for User-Streamer Following is set as 20. The length of ranked list
for Top-N recommendation evaluation is set as 500.

29

Dataset Description

In this way, we got two datasets: LSEC-Small and LSEC-Large. The statistics of
them are summarized in the following tables.

Table 1: Statistics for LSEC-Small

Node #

User 29 422
Item 31 630

Streamer 4633

Edge # Density

Buying 451 441 0.0485%
Following 1 659 943 1.2178%
Selling 1 168 165 0.7972%

Table 2: Statistics for LSEC-Large

Node #

User 202 850
Item 109 502

Streamer 7395

Edge # Density

Buying 3 062 463 0.0138%
Following 5 439 288 0.3626%
Selling 1 953 881 0.2413% 30

Experiments

Experimental Settings

Evaluation Metrics

We refer to the following commonly-used metrics in Top-N recommendation:

• AUC Area Under the ROC Curve.
• MRR Mean Reciprocal Rank.
• NDCG@N Normalized Discounted Cumulative Gain.
• Recall@N.

N is set to 10 and 50. The average metrics across all users are taken as the final
metrics.

31

Baseline Models

We choose one non-graph model and three graph-based models as our baselines:

• NCF includes three instantiations of neural CF: GMF, MLP, and the fusion of
the former two, called NeuMF. In this work, NeuMF achieves the best
performance, hence we choose it as the baseline.

• GCN-RS GCN is a well-known graph-based model. It is originally proposed for
node classification task and we adapt it for recommendation. This method is
denoted as GCN-RS.

• LightGCN is a variant of GCN by removing feature transformation and
nonlinear activation. For fair comparison, we replace the inner product
predictor with MLP predictor to keep the same setting as our proposed
methods.

• GAT-RS GAT is a variant of GCN by applying an attention mechanism to learn
the weights for neighbors aggregation, instead of simply taking the average
among them. We adapt it for recommendation task and name it GAT-RS.

32

Baseline Models

We choose one non-graph model and three graph-based models as our baselines:

• NCF includes three instantiations of neural CF: GMF, MLP, and the fusion of
the former two, called NeuMF. In this work, NeuMF achieves the best
performance, hence we choose it as the baseline.

• GCN-RS GCN is a well-known graph-based model. It is originally proposed for
node classification task and we adapt it for recommendation. This method is
denoted as GCN-RS.

• LightGCN is a variant of GCN by removing feature transformation and
nonlinear activation. For fair comparison, we replace the inner product
predictor with MLP predictor to keep the same setting as our proposed
methods.

• GAT-RS GAT is a variant of GCN by applying an attention mechanism to learn
the weights for neighbors aggregation, instead of simply taking the average
among them. We adapt it for recommendation task and name it GAT-RS.

32

Baseline Models

We choose one non-graph model and three graph-based models as our baselines:

• NCF includes three instantiations of neural CF: GMF, MLP, and the fusion of
the former two, called NeuMF. In this work, NeuMF achieves the best
performance, hence we choose it as the baseline.

• GCN-RS GCN is a well-known graph-based model. It is originally proposed for
node classification task and we adapt it for recommendation. This method is
denoted as GCN-RS.

• LightGCN is a variant of GCN by removing feature transformation and
nonlinear activation. For fair comparison, we replace the inner product
predictor with MLP predictor to keep the same setting as our proposed
methods.

• GAT-RS GAT is a variant of GCN by applying an attention mechanism to learn
the weights for neighbors aggregation, instead of simply taking the average
among them. We adapt it for recommendation task and name it GAT-RS.

32

Baseline Models

We choose one non-graph model and three graph-based models as our baselines:

• NCF includes three instantiations of neural CF: GMF, MLP, and the fusion of
the former two, called NeuMF. In this work, NeuMF achieves the best
performance, hence we choose it as the baseline.

• GCN-RS GCN is a well-known graph-based model. It is originally proposed for
node classification task and we adapt it for recommendation. This method is
denoted as GCN-RS.

• LightGCN is a variant of GCN by removing feature transformation and
nonlinear activation. For fair comparison, we replace the inner product
predictor with MLP predictor to keep the same setting as our proposed
methods.

• GAT-RS GAT is a variant of GCN by applying an attention mechanism to learn
the weights for neighbors aggregation, instead of simply taking the average
among them. We adapt it for recommendation task and name it GAT-RS.

32

Baseline Models

We choose one non-graph model and three graph-based models as our baselines:

• NCF includes three instantiations of neural CF: GMF, MLP, and the fusion of
the former two, called NeuMF. In this work, NeuMF achieves the best
performance, hence we choose it as the baseline.

• GCN-RS GCN is a well-known graph-based model. It is originally proposed for
node classification task and we adapt it for recommendation. This method is
denoted as GCN-RS.

• LightGCN is a variant of GCN by removing feature transformation and
nonlinear activation. For fair comparison, we replace the inner product
predictor with MLP predictor to keep the same setting as our proposed
methods.

• GAT-RS GAT is a variant of GCN by applying an attention mechanism to learn
the weights for neighbors aggregation, instead of simply taking the average
among them. We adapt it for recommendation task and name it GAT-RS.

32

Hyper-parameters Settings

The validation set is used in hyperparameter tuning and early-stop mechanism.
The hyperparameters we used are as follows:

• Learning rate: 0.0005
• Batch size: 4096
• Embedding lookup table dimension: 200
• GNN layer and dimension: −1 → 128 → 64 (−1 for inferred from other
conditions, the same below.)

• Negative sampling ratio K: 4
• MLP layer and dimension: −1 → 128 → 1
• Loss coefficient α for multi-task training: 0.5

After hyperparameters tuned, we train the model with the best hyperparameters
and once it got early stopped we evaluate it directly on the test set and report the
metrics as the final result.

33

Hyper-parameters Settings

The validation set is used in hyperparameter tuning and early-stop mechanism.
The hyperparameters we used are as follows:

• Learning rate: 0.0005
• Batch size: 4096
• Embedding lookup table dimension: 200
• GNN layer and dimension: −1 → 128 → 64 (−1 for inferred from other
conditions, the same below.)

• Negative sampling ratio K: 4
• MLP layer and dimension: −1 → 128 → 1
• Loss coefficient α for multi-task training: 0.5

After hyperparameters tuned, we train the model with the best hyperparameters
and once it got early stopped we evaluate it directly on the test set and report the
metrics as the final result.

33

Experiments

Performance Comparison

Performance Comparison

We repeat each experiment for 5 times and report the average metrics on the test
set.

Table 3: Comparison of the models on LSEC-Small dataset

Model AUC MRR NDCG@10 NDCG@50 Recall@10 Recall@50

NCF 0.8103 0.1588 0.2392 0.3188 0.2832 0.5405

GCN-RS 0.8440 0.1835 0.2862 0.3705 0.3363 0.6078
LightGCN 0.8483 0.1858 0.2895 0.3719 0.3374 0.6069
GAT-RS 0.8506 0.1828 0.2889 0.3742 0.3352 0.6183

LSEC-GCN 0.8581 0.1924 0.3072 0.3869 0.3537 0.6205
LSEC-LightGCN 0.8641 0.1842 0.3022 0.3854 0.3615 0.6380
LSEC-GAT 0.8611 0.1873 0.3012 0.3867 0.3525 0.6375

34

Performance Comparison

Table 4: Comparison of the models on LSEC-Large dataset

Model AUC MRR NDCG@10 NDCG@50 Recall@10 Recall@50

NCF 0.8272 0.1767 0.2805 0.3608 0.3101 0.5633

GCN-RS 0.8545 0.1988 0.3219 0.4091 0.3626 0.6365
LightGCN 0.8532 0.2001 0.3346 0.4184 0.3741 0.6363

LSEC-GCN 0.8482 0.2048 0.3374 0.4153 0.3735 0.6233
LSEC-LightGCN 0.8679 0.1981 0.3333 0.4157 0.3752 0.6427

35

Experiments

Ablation Study

Ablation Study

To investigate the impacts of heterogeneous relations modeling and multi-task
training, we conduct some ablation experiments. We use GCN as the example
aggregator and run the experiments upon LSEC-Small dataset. The results are in
the tables.

Table 5: Comparison of the LSEC-GCN model with different relations and tasks on
LSEC-Small dataset (0, 1 and 2 represent the three relations, User-Item Buying,
User-Streamer Following and Streamer-Item Selling, respectively)

Relations Tasks AUC MRR NDCG@10 NDCG@50 Recall@10 Recall@50

0 0 0.8440 0.1835 0.2862 0.3705 0.3363 0.6078
0, 1 0 0.8449 0.1864 0.2923 0.3731 0.3389 0.6036
0, 2 0 0.8453 0.1748 0.2749 0.3553 0.3270 0.5877
0, 1, 2 0 0.8547 0.1915 0.3057 0.3844 0.3509 0.6146
0, 1, 2 0, 1 0.8581 0.1924 0.3072 0.3869 0.3537 0.6205

36

Conclusion

Conclusion

Problem
How to leverage the tripartite interaction information in live stream E-Commerce
to improve product recommendation?

Solving Process

1. Propose streamers’ influence from data analysis.
2. Propose LSEC-GNN framework.
3. Verify the effectiveness of LSEC-GNN on real-world live stream datasets.
4. Investigate the impacts of heterogeneous relations modeling and multi-task

training with ablation study.

37

Conclusion

Problem
How to leverage the tripartite interaction information in live stream E-Commerce
to improve product recommendation?

Solving Process

1. Propose streamers’ influence from data analysis.
2. Propose LSEC-GNN framework.
3. Verify the effectiveness of LSEC-GNN on real-world live stream datasets.
4. Investigate the impacts of heterogeneous relations modeling and multi-task

training with ablation study.

37

Conclusion

Problem
How to leverage the tripartite interaction information in live stream E-Commerce
to improve product recommendation?

Solving Process

1. Propose streamers’ influence from data analysis.

2. Propose LSEC-GNN framework.
3. Verify the effectiveness of LSEC-GNN on real-world live stream datasets.
4. Investigate the impacts of heterogeneous relations modeling and multi-task

training with ablation study.

37

Conclusion

Problem
How to leverage the tripartite interaction information in live stream E-Commerce
to improve product recommendation?

Solving Process

1. Propose streamers’ influence from data analysis.
2. Propose LSEC-GNN framework.

3. Verify the effectiveness of LSEC-GNN on real-world live stream datasets.
4. Investigate the impacts of heterogeneous relations modeling and multi-task

training with ablation study.

37

Conclusion

Problem
How to leverage the tripartite interaction information in live stream E-Commerce
to improve product recommendation?

Solving Process

1. Propose streamers’ influence from data analysis.
2. Propose LSEC-GNN framework.
3. Verify the effectiveness of LSEC-GNN on real-world live stream datasets.

4. Investigate the impacts of heterogeneous relations modeling and multi-task
training with ablation study.

37

Conclusion

Problem
How to leverage the tripartite interaction information in live stream E-Commerce
to improve product recommendation?

Solving Process

1. Propose streamers’ influence from data analysis.
2. Propose LSEC-GNN framework.
3. Verify the effectiveness of LSEC-GNN on real-world live stream datasets.
4. Investigate the impacts of heterogeneous relations modeling and multi-task

training with ablation study.

37

Thanks!

37

	Introduction
	Problem Definition
	Data Analysis
	Methodology
	Bipartite Node Embedding Learning
	Model Prediction
	Multi-Task Optimization

	Experiments
	Dataset Description
	Experimental Settings
	Evaluation Metrics
	Baseline Models
	Hyper-parameters Settings

	Performance Comparison
	Ablation Study

	Conclusion

